バイソンサイクロン  GENERATOR
(燃料費の削減及び発電)

内外特殊エンジ株式会社
1. バイソニックリオンジェネレーターとは？ .................................................. 2
2. なぜ燃料費の削減になるのか？ ................................................................. 2
3. なぜ発電できるのか？ .......................................................................... 3
4. バイソニックリオンジェネレーターの設置 ............................................. 4
5. バイソニックリオンジェネレーターの機器仕様 ........................................ 5
6. バイソニックリオンジェネレーターの設置前後のデータ比較（2tボイラー12台設置の場） 6
7. バイソニックリオンジェネレーターの設置前後のデータ比較（2tボイラー5台設置の場合） 7
8. バイソニックリオンジェネレーターの設置前後のデータ比較（全般） .............. 8
1. パイソンサイクロンジェネレーターとは？
パイソンサイクロン・ジェネレーターは水車式の羽根に蒸気を渦巻ける（サイクロン）状に回転させ、回転力を与えるものです。この回転力は「蒸気の圧力差」を利用してのもので、蒸気そのものを消費せずなおかつボイラーに使用する燃料費を削減出来るのが特徴です。
通常、貫流ボイラー等で蒸気は0.5～0.6MPaで作られ使用されます。
この圧力を0.95～0.85MPaに上げ、パイソンサイクロン・ジェネレーターで現場使用圧力まで下げます。
パイソンサイクロン・ジェネレーターは減圧弁の代わりとなると同時にこの圧力差を利用し内部の羽根を回転させます。

2. なぜ燃料費の削減になるのか？
パイソンサイクロン・ジェネレーターの羽根は蒸気の圧力差で回転し、蒸気はサイクロンの原理で渦状に回転し「湿り蒸気」を「乾き蒸気」に変え渦の中心部から出て行きます。
貫流式ボイラーは蒸気の中に約10％程度の高温水が含まれており、今まで使用されず、排出されていた高温水を内部で再蒸発させ蒸気として使用出来る様にします。
これに伴い、ボイラー運転台数・高燃焼時間が減少し燃料費の削減へとつながります。（実測データ資料参照）
3. なぜ発電できるのか？
誘導機の回転子に外力を加え回転磁界の回転方向に同期速度以上に回転させると、トルクが逆回転方向に作用し、誘導機は発電機として動作する原理を採用。
誘導電動機とモーターの回転をインバータにより、蒸気流量に合った回転にすることでより多くの発電量を得ることに出来、誘導電動機と蒸気水車はカップリングを通して接続し、発電させます。
発電量は「蒸気流量」と「蒸気の圧力差」がポイントとなり、蒸気流量が多いほど発電量が増えます。
水車羽根の回転数を上げる事により、発電量を増加させることが可能です。
蒸気の使用量が一定でない場合、発電量は変動しますが電力会社の系統に接続しますので、使用上問題はありません。
水車羽根は蒸気の圧力差によって回転し、蒸気を消費することなく、バイソンサイクロンの省エネ効果を伴っていますので、省エネ発電機としては優れた商品です。
4. バイソングアイクロン・ジェネレーターの設置
配管工事はボイラーからヘッダーへの配管を変更するだけです。
電気工事はモーターを設置する場合と同様に定格容量を満たすブレーカーに接続するだけで十分です。
特別な配管・配線は不要です。
### 5. バイオンサイクロン・ジェネレーターの仕様

<table>
<thead>
<tr>
<th>(1) 本体</th>
<th>B-150G</th>
<th>B-200G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(30kw)</td>
<td>(40kw)</td>
</tr>
<tr>
<td>構造</td>
<td>水車羽根方式</td>
<td></td>
</tr>
<tr>
<td>流量調整</td>
<td>ノズルユニット（16個） 2t/hから1t/h単位で設定可能</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8t/h～15t/h</td>
<td>15t/h～25t/h</td>
</tr>
<tr>
<td>羽根幅</td>
<td>220mm</td>
<td>270mm</td>
</tr>
<tr>
<td>回転数</td>
<td>50Hz</td>
<td>インバータ制御 700rpm〜2000rpm（羽根回転数）</td>
</tr>
<tr>
<td></td>
<td>60Hz</td>
<td></td>
</tr>
<tr>
<td>軸受</td>
<td>ラジアル軸受</td>
<td>ボールベアリング1組</td>
</tr>
<tr>
<td></td>
<td></td>
<td>スラスト軸受</td>
</tr>
<tr>
<td>安全装置</td>
<td>入口蒸気遮断用バタフライ弁（巴バルブ）</td>
<td></td>
</tr>
<tr>
<td>蒸気シール</td>
<td>メカニカルシール（水冷）</td>
<td></td>
</tr>
<tr>
<td>発電機</td>
<td>方式</td>
<td>誘導原動機式 全閉外扇式</td>
</tr>
<tr>
<td></td>
<td>定格</td>
<td>45Kwx1500(1800)rpm 75Kwx1500(1800)rpm</td>
</tr>
<tr>
<td></td>
<td>電源</td>
<td>AC 3相 200V・210V・（選択）</td>
</tr>
<tr>
<td>蒸気圧力</td>
<td>入口</td>
<td>1.0MPa以下（ボイラ圧力）</td>
</tr>
<tr>
<td></td>
<td>出口</td>
<td>0.2〜0.5MPa以下（プロセス使用圧力）</td>
</tr>
<tr>
<td>配管口径</td>
<td>入口</td>
<td>150A</td>
</tr>
<tr>
<td></td>
<td>出口</td>
<td>150A</td>
</tr>
<tr>
<td></td>
<td>入口</td>
<td>200A</td>
</tr>
<tr>
<td></td>
<td>出口</td>
<td>200A</td>
</tr>
<tr>
<td>外観寸法</td>
<td>最大1000x2400x2275mm</td>
<td>最大1100x2450x2320mm</td>
</tr>
<tr>
<td>重量</td>
<td>約 3000 kg</td>
<td>約 3500 kg</td>
</tr>
</tbody>
</table>

### (2) 制御関係

<table>
<thead>
<tr>
<th>形式</th>
<th>鋼板製 屋内設置開鎖 自立型</th>
</tr>
</thead>
<tbody>
<tr>
<td>発電機駆動方式</td>
<td>45kw用インバーターエー 75kw用インバーターエー</td>
</tr>
<tr>
<td>制御方法</td>
<td>「運転」/「停止」 タッチパネル</td>
</tr>
<tr>
<td>電源</td>
<td>AC 3相 200V・210V 50/60Hz</td>
</tr>
<tr>
<td>バイパス弁の制御（＊）</td>
<td>出口圧力センサー（＊）によるP. I. D制御（＊）</td>
</tr>
<tr>
<td>安全回路</td>
<td>モーターサーマルリレー 3Eリレー</td>
</tr>
<tr>
<td>外形寸法</td>
<td>600 x 250 x 1700mm</td>
</tr>
<tr>
<td>インバーター</td>
<td>40kw 55kw</td>
</tr>
</tbody>
</table>
6. パイソンサイクロン・ジェネレーター設置前後のデータ比較（2tボイラー12台設置の場合）
B社染色整理業 供給圧 3.5～4.0kg
*
パイソンサイクロン・ジェネレーター稼働後はボイラーの運転台数が減り、燃料の削減につながっています。

<table>
<thead>
<tr>
<th>時間</th>
<th>ボイラー (kg/cal)</th>
<th>運転台数</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>5.2</td>
<td>12</td>
</tr>
<tr>
<td>10:05</td>
<td>5.4</td>
<td>11</td>
</tr>
<tr>
<td>10:10</td>
<td>5.7</td>
<td>11</td>
</tr>
<tr>
<td>10:15</td>
<td>5.7</td>
<td>12</td>
</tr>
<tr>
<td>10:20</td>
<td>5.8</td>
<td>11</td>
</tr>
<tr>
<td>10:25</td>
<td>6.1</td>
<td>10</td>
</tr>
<tr>
<td>10:30</td>
<td>5.8</td>
<td>11</td>
</tr>
<tr>
<td>10:35</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>10:40</td>
<td>5.8</td>
<td>12</td>
</tr>
<tr>
<td>10:45</td>
<td>5.7</td>
<td>11</td>
</tr>
<tr>
<td>10:50</td>
<td>5.5</td>
<td>12</td>
</tr>
<tr>
<td>10:55</td>
<td>5.7</td>
<td>12</td>
</tr>
<tr>
<td>11:00</td>
<td>5.8</td>
<td>11</td>
</tr>
<tr>
<td>11:05</td>
<td>5.6</td>
<td>12</td>
</tr>
<tr>
<td>11:10</td>
<td>5.5</td>
<td>12</td>
</tr>
<tr>
<td>11:15</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>11:20</td>
<td>5.5</td>
<td>12</td>
</tr>
<tr>
<td>11:25</td>
<td>5.8</td>
<td>11</td>
</tr>
<tr>
<td>11:30</td>
<td>6.3</td>
<td>12</td>
</tr>
<tr>
<td>11:35</td>
<td>6.7</td>
<td>12</td>
</tr>
<tr>
<td>11:40</td>
<td>7.1</td>
<td>12</td>
</tr>
<tr>
<td>11:45</td>
<td>7.4</td>
<td>12</td>
</tr>
<tr>
<td>11:50</td>
<td>7.5</td>
<td>12</td>
</tr>
<tr>
<td>11:55</td>
<td>7.5</td>
<td>12</td>
</tr>
<tr>
<td>12:00</td>
<td>7.8</td>
<td>12</td>
</tr>
<tr>
<td>12:05</td>
<td>6.8</td>
<td>12</td>
</tr>
<tr>
<td>12:10</td>
<td>7.5</td>
<td>12</td>
</tr>
<tr>
<td>12:15</td>
<td>7.8</td>
<td>11</td>
</tr>
<tr>
<td>12:20</td>
<td>7.8</td>
<td>10</td>
</tr>
<tr>
<td>12:25</td>
<td>7.9</td>
<td>10</td>
</tr>
<tr>
<td>12:30</td>
<td>8.1</td>
<td>9</td>
</tr>
<tr>
<td>12:35</td>
<td>8.2</td>
<td>8</td>
</tr>
<tr>
<td>12:40</td>
<td>8.3</td>
<td>9</td>
</tr>
<tr>
<td>12:45</td>
<td>8.3</td>
<td>8</td>
</tr>
<tr>
<td>12:50</td>
<td>8.1</td>
<td>9</td>
</tr>
<tr>
<td>12:55</td>
<td>7.9</td>
<td>9</td>
</tr>
<tr>
<td>13:00</td>
<td>8.1</td>
<td>8</td>
</tr>
<tr>
<td>13:05</td>
<td>8.5</td>
<td>9</td>
</tr>
<tr>
<td>13:10</td>
<td>8.2</td>
<td>8</td>
</tr>
<tr>
<td>13:15</td>
<td>8.4</td>
<td>9</td>
</tr>
<tr>
<td>13:20</td>
<td>8.5</td>
<td>8</td>
</tr>
<tr>
<td>13:25</td>
<td>8.4</td>
<td>8</td>
</tr>
<tr>
<td>13:30</td>
<td>8.3</td>
<td>9</td>
</tr>
<tr>
<td>13:35</td>
<td>8.3</td>
<td>9</td>
</tr>
<tr>
<td>13:40</td>
<td>8.4</td>
<td>8</td>
</tr>
<tr>
<td>13:45</td>
<td>8.5</td>
<td>7</td>
</tr>
<tr>
<td>13:50</td>
<td>8.4</td>
<td>8</td>
</tr>
<tr>
<td>13:55</td>
<td>8.6</td>
<td>8</td>
</tr>
<tr>
<td>14:00</td>
<td>8.5</td>
<td>8</td>
</tr>
</tbody>
</table>

* 上のグラフはB-150Gを使用する前と使用後の貫流ボイラーの運転状況です。
パイソンサイクロン・ジェネレーター使用前は平均11台稼働、使用後は8.5台に減少しており、ボイラー1台あたりの燃料消費量が約100万kcal/Hとして、250万Kcal/Hの節約となり、A重油（9400Kcal/L）を燃料として使用した場合、約260L/Hの節約となります。（但し使用条件により異なる）
更に蒸気の圧力差を利用したタービンの回転により、20〜40Kw/hの発電も行い大幅なエネルギーコストの削減となります。
### 7. バイソンサイクロン・ジェネレーター設置前後のデータ比較 (2tボイラー5台設置の場合)

A染色整理業 供給圧 2.8〜3.2kg

* バイソンサイクロン・ジェネレーター稼働後はボイラーの運転台数が減り、燃料の削減につながっています。

<table>
<thead>
<tr>
<th>時間</th>
<th>ボイラー圧 (kg/cm²)</th>
<th>運転台数</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>5.5</td>
<td>4</td>
</tr>
<tr>
<td>10:05</td>
<td>5.6</td>
<td>4.5</td>
</tr>
<tr>
<td>10:10</td>
<td>5.6</td>
<td>5</td>
</tr>
<tr>
<td>10:15</td>
<td>5.7</td>
<td>4.5</td>
</tr>
<tr>
<td>10:20</td>
<td>5.5</td>
<td>5</td>
</tr>
<tr>
<td>10:25</td>
<td>5.7</td>
<td>5</td>
</tr>
<tr>
<td>10:30</td>
<td>5.8</td>
<td>5</td>
</tr>
<tr>
<td>10:35</td>
<td>5.6</td>
<td>5</td>
</tr>
<tr>
<td>10:40</td>
<td>5.8</td>
<td>5</td>
</tr>
<tr>
<td>10:45</td>
<td>5.7</td>
<td>5</td>
</tr>
<tr>
<td>10:50</td>
<td>5.5</td>
<td>5</td>
</tr>
<tr>
<td>10:55</td>
<td>5.7</td>
<td>5</td>
</tr>
<tr>
<td>11:00</td>
<td>5.8</td>
<td>5</td>
</tr>
<tr>
<td>11:05</td>
<td>5.6</td>
<td>4.5</td>
</tr>
<tr>
<td>11:10</td>
<td>5.6</td>
<td>4.5</td>
</tr>
<tr>
<td>11:15</td>
<td>5.5</td>
<td>5</td>
</tr>
<tr>
<td>11:20</td>
<td>5.5</td>
<td>5</td>
</tr>
<tr>
<td>11:25</td>
<td>5.8</td>
<td>4.5</td>
</tr>
<tr>
<td>11:30</td>
<td>5.7</td>
<td>5</td>
</tr>
<tr>
<td>11:35</td>
<td>5.8</td>
<td>5</td>
</tr>
<tr>
<td>11:40</td>
<td>5.8</td>
<td>4.5</td>
</tr>
<tr>
<td>11:45</td>
<td>5.7</td>
<td>4.5</td>
</tr>
<tr>
<td>11:50</td>
<td>5.5</td>
<td>5</td>
</tr>
<tr>
<td>11:55</td>
<td>5.7</td>
<td>4.5</td>
</tr>
<tr>
<td>12:00</td>
<td>5.6</td>
<td>5</td>
</tr>
<tr>
<td>12:05</td>
<td>6.8</td>
<td>4</td>
</tr>
<tr>
<td>12:10</td>
<td>7.5</td>
<td>4.5</td>
</tr>
<tr>
<td>12:15</td>
<td>7.8</td>
<td>4</td>
</tr>
<tr>
<td>12:20</td>
<td>7.8</td>
<td>4</td>
</tr>
<tr>
<td>12:25</td>
<td>7.9</td>
<td>4.5</td>
</tr>
<tr>
<td>12:30</td>
<td>8.1</td>
<td>4</td>
</tr>
<tr>
<td>12:35</td>
<td>8.5</td>
<td>3.5</td>
</tr>
<tr>
<td>12:40</td>
<td>8.5</td>
<td>4</td>
</tr>
<tr>
<td>12:45</td>
<td>8.5</td>
<td>3</td>
</tr>
<tr>
<td>13:00</td>
<td>8.6</td>
<td>3.5</td>
</tr>
<tr>
<td>13:05</td>
<td>8.5</td>
<td>3</td>
</tr>
<tr>
<td>13:10</td>
<td>8.6</td>
<td>3.5</td>
</tr>
<tr>
<td>13:15</td>
<td>8.4</td>
<td>3</td>
</tr>
<tr>
<td>13:20</td>
<td>8.5</td>
<td>3.5</td>
</tr>
<tr>
<td>13:25</td>
<td>8.4</td>
<td>3</td>
</tr>
<tr>
<td>13:30</td>
<td>8.7</td>
<td>3.5</td>
</tr>
<tr>
<td>13:35</td>
<td>8.6</td>
<td>3</td>
</tr>
<tr>
<td>13:40</td>
<td>8.5</td>
<td>3</td>
</tr>
<tr>
<td>13:45</td>
<td>8.5</td>
<td>3.5</td>
</tr>
<tr>
<td>13:50</td>
<td>8.4</td>
<td>3.5</td>
</tr>
<tr>
<td>13:55</td>
<td>8.6</td>
<td>3.5</td>
</tr>
<tr>
<td>14:00</td>
<td>8.5</td>
<td>3</td>
</tr>
</tbody>
</table>

上のグラフはB-150Gを使用する前と使用後の貫流ボイラーの運転状況です。
バイソンサイクロン・ジェネレーター使用前は約4.5台稼働、使用後は3.5台に減少しており、ボイラー1台あたりの燃料消費量約100万kcal/Hの節約となり、天然ガス（10700Kcal/m³）を燃料として使用した場合、1時間当たり約93m³の減少（但し使用条件により異なる）となり、更に蒸気の圧力差を利用したタービンの回転により、10〜20Kw/hの発電も行い大幅なエネルギーコストの削減となります。
8. 蒸気水車設置前後のデータ比較（金額等）

<table>
<thead>
<tr>
<th></th>
<th>設置前</th>
<th>設置後</th>
<th>設置前</th>
<th>設置後</th>
<th>設置前</th>
<th>設置後</th>
<th>設置前</th>
<th>設置後</th>
<th>設置前</th>
<th>設置後</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ボイラー種類</td>
<td>2t貫流式5台</td>
<td>2t貫流式12台</td>
<td>2t貫流式6台</td>
<td>2t貫流式8台</td>
<td>20t水管式2台</td>
<td>4t貫流式2台</td>
<td>2t貫流式12台</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 稼働時間</td>
<td>8時間操業</td>
<td>24時間操業</td>
<td>9時間操業</td>
<td>24時間操業</td>
<td>24時間操業</td>
<td>24時間操業</td>
<td>24時間操業</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 燃料の種類</td>
<td>都市ガス(m³)</td>
<td>A重油(kl)</td>
<td>都市ガス(m³)</td>
<td>C重油(kl)</td>
<td>A重油(kl)</td>
<td>A重油(kl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 蒸気使用目的</td>
<td>染色加工</td>
<td>染色加工</td>
<td>染色加工</td>
<td>染色加工</td>
<td>染色整理</td>
<td>染色整理</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. ボイラー気圧(kg/cm²)</td>
<td>5.0</td>
<td>8.5</td>
<td>6.0</td>
<td>8.0</td>
<td>7.0</td>
<td>8.0</td>
<td>6.5</td>
<td>8.5</td>
<td>6.5</td>
<td>10.0</td>
</tr>
<tr>
<td>6. 供給圧力(kg/cm²)</td>
<td>3.5</td>
<td>3.0</td>
<td>4.0</td>
<td>3.5</td>
<td>4.5</td>
<td>4.0</td>
<td>4.0</td>
<td>3.5</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>7. 発電量(Kw/h)</td>
<td>10〜20</td>
<td>15〜30</td>
<td>10〜20</td>
<td>15〜30</td>
<td>20〜40</td>
<td>15〜40</td>
<td>15〜35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. 発電量(Kw/h/月)</td>
<td>3,140</td>
<td>7,480</td>
<td>3,050</td>
<td>17,644</td>
<td>10,080</td>
<td>10,320</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. 発電による貯電割れ額(千円/月)</td>
<td>-47</td>
<td>-105</td>
<td>-46</td>
<td>-152</td>
<td>-171</td>
<td>-155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. 蒸気使用量(t/月)</td>
<td>1,449</td>
<td>1,218</td>
<td>5,280</td>
<td>4,489</td>
<td>1,449</td>
<td>1,203</td>
<td>9,662</td>
<td>8,213</td>
<td>6,072</td>
<td>5,344</td>
</tr>
<tr>
<td>11. 燃料使用量/月</td>
<td>78,800</td>
<td>66,105</td>
<td>377</td>
<td>314.5</td>
<td>83,033</td>
<td>68,502</td>
<td>388</td>
<td>323</td>
<td>425</td>
<td>376</td>
</tr>
<tr>
<td>12. 燃料使用金額/月(千円)</td>
<td>3,546</td>
<td>2,974</td>
<td>9,425</td>
<td>7,862</td>
<td>3,736</td>
<td>3,082</td>
<td>9,700</td>
<td>8,200</td>
<td>11,050</td>
<td>9,776</td>
</tr>
<tr>
<td>13. 削減額(千円/月)</td>
<td>-572</td>
<td>-1,563</td>
<td>-654</td>
<td>-1,500</td>
<td>-1,274</td>
<td>-2,400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. 削減効率(%)</td>
<td>83.8</td>
<td>83.4</td>
<td>82.4</td>
<td>84.5</td>
<td>88.4</td>
<td>82.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. トータル削減額/月</td>
<td>-619</td>
<td>-1,668</td>
<td>-700</td>
<td>-1,652</td>
<td>-1,445</td>
<td>-2,555</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8